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Statistical Inference for Bounds of Random Variables 

by    Peter Cooke 

Statistics Department, 

University of New South Wales,  Sydney. 

Summary 

Robson and Whitlock (1964) considered point estimation and con- 

fidence limits for the upper bound of a random variable when the bound 

was known to be a truncation point.  However, their approach to the 

point estimation problem failed to produce an estimator with smaller 

mean squared error than the largest order statistic from a random sample. 

In this paper we will construct point estimators of the bounds of random 

variables which are substantially better estimators than the extreme 

order statistics for many classes of random variables, including those 

whose distributions are truncated at one or both ends. We will also 

construct confidence limits and tests of hypotheses for bounds.  The 

main results are large sample results. 

1.    Introduction 

Suppose  X., X„, ,X   are independent random variables, each 

with absolutely continuous cumulative distribution function  F(x), 

where  F(x) e (0,1)  only for  x£(<J>,9).  The interval   (<j),6)  is 

sometimes referred to as the support of the distribution function  F ; 

see, for example, Feller (1966).  Let  Y < Y < ... < Y   be the 

order statistics based on  X1, X„,...,X .  We will construct a point 

estimator of  6  when  8  is known to be finite and  (j)  is unknown. 

Of course the result which follow also apply when  <f>  is known and,. 
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in particular, when  <|> = - °°,   the only assumption required then 

being that 

e   2 
/ x dF(x) < °° . 
—CO 

We will also construct confidence limits for  0  and large sample 

tests of hypotheses about  8 .  No results for lower bounds will be 

proved since these can easily be derived from the upper board results. 

2.   Point Estimation of  8. 

With no information about the form of  F  and, in particular, 

with no information about the shape of the upper tail of f(x) = F'(x), 

the statistic chosen to estimate  8  seems likely to be  Y     In 

an attempt to improve on the estimator  Y   in the sense of reducing 

its mean squared error when  0  was known to be a truncation point 

of the upper tail of  f(x),  Robson and Whitlock (1964) applied a 

modification of Quenoulli's (1956) bias reduction technique to  Y 

This led to the family of estimators 

T0O=!  (-l)
1^) Yn_. ,   k= 1,2,...,n-1, 

i=0 

where removal of the leading bias term gave T   ,  removal of the 

next term gave T     and so on.  However, it was found that T 6     n n 

had the same asymptotic mean squared error as  Y  ,  while the mean 

(k) 
squared error of  T     increased with  k .  The author has been 

able to show that for the other types of upper bound considered in 

(k) 
this paper the mean squared error of  T    also increases with k, 

but that  T     has smaller asymptotic mean squared error than Y 

Thus we will compare the mean squared error of the estimator derived 

here with that of 

T ^ = Y + (Y - Y  ,) = 2Y - Y '", 
n     n    n   n-1     n   n-1 



The term  Y - Y  .  attempts to correct the bias in  Y   and of n   n-1      v n 

course does so in a sensible way since  Y   underestimates  6  and '        n 

Y - Y 1  is nonnegative with probability one . 

The random variable  Y   has distribution function  F (y) n 

and mean 

e e 
E(Y )  = / ydFn(y)  = 9 - / Fn(y)dy ,      (1) 

(j, «|, 

on integrating by parts.  Thus we can write 

6  =  E(Yn) + / Fn(y)dy 

and this suggests the estimator 

Y n 
Y
n + /  Fn(y)dy 

where  F(y)  is the empirical distribution function based on the 

order statistics  Y., Y2,...,Y ;  that is, 

y < YX 

F(y)     ^      ,   y± < Y < Yi+1, i = 1,2,...,n-1     (2) 

y > \ n 

Now 
Y n-1  . n . „v 

/nin(y)dy =  I (i) <Yi+l-V 
\ i=l 

n   . n  . . n n-1 . n-      . . * n 
- Y . I {(I) _ (l=i) } Y - Y -n[i-i)  _ (i . i±lj } Y 

n  ,'-. lw *• n ' J i   n .L„l   v      of *    n ' J n-i 
i=l i=0 

and so the suggested estimator is 

n-1      . n       .,i n 
2Y - £ {(i _±)  _ (i _i±i)  W    . n  .L.   n   n'   v    n '  J n-i 

1=0 

However, since we will only investigate the case in which  n  is 

large, we will consider the estimator 



1  n-1   . 
9  = 2Y - (1-e )  I e"1 Y  . (3) 
n      n       ' .'      n-i 

and compare its performance with that of  T    .  The asymptotic 

(1) 
efficiency of   T    relative to  8   will be defined to be 

E(6n-9)
2 

lim 
n •* oo E(T(1)-9)2 

n 

When estimating cf) ,  the equation 

8 
E(Y.) - * + / Cl-F(y)]ndy 

4> 
suggests the estimator 

\ ~ r  tl - F(y)}n dy = 2Yl -    \ { (l - ±± f _ (l _ A f }  Y± 
Yl X X 

and so, for large  n,  we will consider the estimator 

n 
$  = 2Y. - (e-1) I    e 1Y.  . 
n     1       . i    i 

It should be noted at this stage that although we will only 

investigate properties of estimators based on continuous random 

variables, in the case of discrete variables, arguments like those 

/\        •"• 

above lead to similar estimators to  8   and  <1>  .  For example, 
n        n r 

suppose a random variable with distribution function  F  can take 

only the integer values  <)><<j>+l<...<9  with positive proba- 

bility.  As above, suppose  Y1, Y_,...,Y   are the order statistics 

based on a random sample of size  n  from  F .  Then 

e 9 
ECY ) = (l)Fn((l)) + I    y{Fn(y) - Fn(y-1)} - 6+1 - J Fn(y) 

y=$+l y=(J) 

and so the suggested estimator of  9  is 

Y 

Yn - 1 + I  Fn(y) 
r 

1 
n V y-Y. 



NOW y 

I>(y) = i + Y (j)n (Y1+1 - Y.) 
y=Yx x=l 

since the left hand side has  Y . - Y.  terms equal to 
. n • Ä 

(—) ,  i = 1,2 n-1  and  Fn(Y ) = 1 .  Thus the estimator of 
n n 

9  is exactly as in the continuous case. 

3.  Asymptotic Efficiency 

According to Gnedenko (1943), when  8  is finite there are 

only two possible nondegenerate limiting distributions of normalized 

values of  Y     In this paper we will only derive results for the 

case 

6-   1/V 
Fn(y) ~ exp {- (g^L- )  }  as  n 

n 

for which the necessary and sufficient condition is that for   c > 0, 

lim    i-F(cy+?> = c1/v 

where  u = F (l - —1 . 
n     »   n' 

In this section we will discuss the asymptotic efficiency of 

T    relative to  9   when  F  satisfies the above condition, 
n n 

First we require expressions for means, variances and covariances 

of order statistics.  The following expressions are not difficult 

to obtain: 

1  . 
E(Y  .) - n( . ) / F" (x)xn"1_1(l-x):Ldx, 0 < i < n-1 , (4) 

. n-i     x  0 

E(Yn_i|Yn_j=y) = (n-j-l)(^J)J F"1{xF(y)}xn"i"1(l-x)1"j"1dx,0<j<i<n-i. 

(5) 
If 

Fn(y) ~ exp{ - {Q^J-)  } as  n -* *  , 
n 



then  F  (x) ~ 9 - (0-u ) (-log x )   as  n -> °°   and, using (4), 
n 

we find that for  i  small 

E(Yn_.) -. 6 - (9-un) ^±ga  as  n , .        (6) 

and, from (5), when i is small and  i > j > 0 , 

(0-u )  °°     o   1/v V      • . I 

E(Y  . |Y  .=y)~ 9 -j~^ j    {z + (P-)     }    e~Z  z^^dz as n + « . 
n-i1 n-j J/ r(x-i) 7. l       V3-u '  J 

0        n (7) 

It is  convenient  to write 

Cov(Y     . ,Y     .)   = E(Y     .-9){Y     .-E(Y     .)} 
n-i    n-j n-i n-j n-j 

,       9 . 
= *(,)   /  {y-E(Y     ,)}E(Yri    -0^       =y)Fn_;l"i(y){l-F(y)}:1   dF(y) 

JA n J n-i n j 

from which, using (6) and (7), we obtain 

2 
(0—U )      oo oo 

as  n •*• °°   and finally, for i > j > 0  and i small, 

„     ,v N   /n  %2 r(V+j+l) rr(2v+i+l)  r(v+i+l)t      ,   ,0s Cov(Yn-i'Yn-j
) ~ (e-un}  r(J+l)  ^(v+i+l) ~   r(i+l) > as n " °°' (8) 

Similar calculations to those above give 

TT rv      \       /Q  \2   rr(2v+i+l)   T (v+i+1) i       ^ _ ,-. Var(Yn_.) - (9-un) {-JJ^ ^7^  } as  n -> - (9) 

for  i > 0  and  i  small.  Thus (8) also holds for i = j . 

From (6), (8) and (9) we now have 

2 
(9-u )~2 E(T(1)- 9)2 ~ (2V -V+1) r(2v+1)  as  n -> 00 . (io) 

n     n (V+l; 
Ä   2 We will now find an expression for  E(6 -0)  •  From (3) 

and (6) we obtain 

(9-un)
_1 E(§ -9) ~ {(l-e_1)"V-2 } T(v+1)  as  n •->•°° (11) 



and, using (3), (8), (9) and (11), 

(e-un)"
2E(en-e)

2~4r(2v+i)+4r2(v+i)(i-e"1)"v+rc2v+i)(i-e"1)2(i-e"2)"2v_1 

oo 

- r2(v+l)(l-e-
1)-2V-4r(v+l)(l-e-

1) I  e"1^^ 

+ 2(l-e_1)2 I e"1 r(2v+i+1)  Ye"* r(v+J+1)  as   n - -       (12) + /U e ;  I  e  r(v+i+1)    Ze  r(j+1)   as   n     .    U^ 
x=l j=0 

(1) A- Thus the asymptotic efficiency of  T     relative to  9 

is given by 

E(9 -6)2 

n(v)  = lim    " (1)  2 
n -*- oo E(TV -G) 

n 

which equals the ratio of the expressions on the right hand sides of 

(12) and (11).  Some values of  n(v)  are given to three significant 

figures in Table 1. 

Table 1:  Values of the asymptotic efficiency of T 

relative to  6 . n 

V 1/5 1/4 1/3 1/2 1 

n(v) 1.16 1.17 1.17 1.08 .666 

The value  V = 1  corresponds to densities f(x) which are 

truncated at 6 ;  that is,  0 < f-(6) < °° .  Thus  9   provides 

a solution to the problem of Robson and Whitlock, though it is 

slightly inferior to T    for values of V other than V = 1 . 

A. 

However, in the next section we will improve on 9  to produce 

an estimator with smaller asymptotic mean squared error than an 

improved T     for all values of  V  considered in Table 1.  The 

value  V = %    corresponds to densities  f(x) with f(9)  equal to 

zero or infinity, but with  f'(9)  nonzero and finite and, in 



general,  V = r—r      corresponds to a density which is zero or infinite 

at   6 and whose first finite, nonzero derivative at  6  is its 

k    derivative.  The derivatives mentioned here are of course all 

left derivatives at 8 . 

4.    Improving on  9 

Suppose now that the value of  V  corresponding to the upper 

tail of the density  f  is known, though the form of the function 

is unknown.  This situation seems likely to occur in practical 

problems, since for example one might know that he is sampling from a 

distribution which is truncated at 8 ,  so  V = 1 .  In this case 

it does not seem to be possible in general, by considering a function 

of  Y   alone,  to improve on the estimator  Y   either in the n r n 

sense of reducing the order of magnitude of its bias or of reducing 

its mean squared error.  For example, if we consider estimators 

proportional to Y  ,  then the constant of proportionality which 

minimizes the mean squared error of the 'estimator' is 

c(a) = 1 + r(a+l)e-1(8-u ) + 8~2 0[(8-u )2] 
n n 

which is a  function of 8 . 

On the other hand, the estimator 

f(1)  = Y + V_1(Y -Y  ,) 
n     n      n n-1 

2 
has bias of order of magnitude  (8-u )   compared with order  8-u 

for  T   .  using (6) and (.8) we easily find 

and 

(8-u ) 2E(T(1)-6)2 ~ T(2V+1)  as n -*• 

(8-un) 
2E(Y -8)2 ~ T(2V+1)  as  n + 



so that bias reduction in  T     is achieved at the expense of 
n 

increased asymptotic mean squared error except for  v = 1  where 

there is no change.  The estimator 

-1,-VT-I -l.V -i. 5 = Y + {l-d-e"1)- }  {Y -(1-e"1) £ e_1Y  .} n   n l n       . «   n-xJ x=0 

also has bias of order of magnitude  (6-u )' 

8-u_ for       0 Some values  of 

compared with order 

TljCv)     =       lim 
E(S -9)' n 

n -> » E(T(1)-9)2 

the asymptotic efficiency of  T (1) 
n 

relative to are given 

to three significant figures in Table 2. 

;(D Table 2:  Values of the asymptotic efficiency of T   relative to 9 . 

V 1/5 1/4 1/3 1/2 1 

r^Cv) .680 .683 .689 .700 .731 

However, our main aim is to construct estimators with mean squared 

error as small as possible.  When  V  is known, the estimator of  9 

of the form 

T(1)  = Y + c,(V)(Y -Y  ,) n      n   In n-1 

with smallest mean squared error is the one for which  c.(v) = 1/2V 

and, for this choice of  c.(v),  we can show that 

( .-2  -(1)   2   r(2V+2) 
(9-un)  E(Tn -9)  ~ 2(1+v) as  n -»• co 

The estimator of the form 

n-1 

n = Yn + c9(v) fr    -   a-e~l)  I  e-h, } n 
i-0 

n-x 

with smallest mean squared error is the one for which c„(v)=a1(v)/a«(v), 

where 



&1(v) = rcv+Dd-e-1)   l_ e"1 rffiSff -r(2v+i) 

and 

i=o       J(v+i+1) 

a2(v)  - r(2v+l){H-(l-e-1)2(l-e-2)-2V-1}-2r(v+l)(l-e-1)   I e"1 ^ggf 

+ 2Cl-e_1)2    ? e_i F(2v+i+1)     Ve-J   F(v+J+1) 

iii     r(v+i+i)    ^    r( j+i) 

The asymptotic efficiency of  x     relative to  6  for the 

above choices of  c1(v)  and  c„(v)  is given by 

E(0n-9)
2 

n„(v)  = lira   _.   
z      n -> o° E(TU;-6)Z 

n 

Some values of  H2(V)  are given to three significant figures in 

Table 3. 

Table 3:  Values of  c„(v)  and the asymptotic efficiency of 

T J   relative to  9 
n n 

V      1/5     1/4     1/3     1/2      1 

c2(v)   6.42    5.11    3.80    2.49    1.18 

n2(v)   .819    .824    .831    .844    .877 

For practical purposes the simplicity of the estimators T 

and  T    makes them attractive.  T   could be used when  V is 
n n 

unknown, though  8   is a much better estimator if 9  happens to 

be a truncation point.  T    could be used when  V  is known 

since even though it is always inefficient relative to  9  ,  its 

efficiency doesn't drop below 81% for the values of  V 

considered here. 

10 



5.  Confidence Limits For 

If 

1/V 
Fn(y) ~ exp{-( S_)   } 0-u as  n •*• °° , 

then 

lim P 
n -*• °° 

v   n    ' 
1 - exp(-x  )  for  x > 0 

and it is not difficult to prove that  (8 - TV ')/(8-u )  also has 

a non-degenerate limiting distribution which is not a function of 

8  .  This leads us to consider  (8-Y )/j[0-T  ),  or equivalently, 

(9-Y )/(Y -Y  )  as the basis for constructing confidence limits 

for 6 . 

When 

-,n, 1/V 
F"(y) - exp{ - (2=Z_)   } 

n 
as   n 

we find 

re - Y 

n •> oo  t. n n-1 
< x 

nl/v 

1+x 
,  0 < X < oo (13) 

and hence, whatever the values of  6,<j)  or any other parameters 

of the distribution  F , 

lim P[Y +{(f)"V-l}_1{Y -Yn  ,}<8<Y +{ (1- ^^-D'^Y -Yn  .»l-o, . „   n  z        n n-1 - - n     /        n n-i 
n -*• °° 

lim P[8 > Y + {a"V-l}_1{Y -Y .}] = 1-a - n n n-1 
n -*• oo 

and 

lim  P[8 < Y + {(l-oO^-l}"1 {Y -Y  .}]  = 1 - a  . 
^ _     — n n n-l n •*• oo 

11 



When  8  is a truncation point  V = 1  and the upper bound 

for  8  in the last statement equals  Y + (a -1)(Y -Y  ,), M       n n n-1 

which is Robson and Whitlock's approximate upper confidence bound 

for 8 . 

6.  Large Sample Tests of Hypotheses About 8 . 

Consider the hypotheses  H  : 8 = 8  and H, : 8 = 0.(< 8 ) 

and the test with rejection region for H:(6n-Y )/(Y -Y  .)>{(l-a)~-l}~ . 
OUnnn-JL- 

If we denote the power function of this test by .3 (8)  and, if 

8- i/V 

Fn(y) ~ exp{ - [Q^-)     }    as   n -> » , 
n 

from (13) we have   lim 3 (®n)  = a '  whatever the values of (() 
n -> 00 

or any other parameters of the distribution  F .  Thus, when  n 

is large the test will have size approximately equal to a .  Also, we 

find the following asymptotic expressions for  3 (8) : 

e   1/V.Ü-1/V) 

3n(9) ~ l-(l-a){(l-a)-V-l}1/v-(1-1/v)( öV )      vl/v-lT(lM. 

exp -{(l-a)"V-l}{Q^- }1/V 1 as n •*• «» for 8 < 8Q ,  (14) 
n     -I 

s  8-8 \I/v 
3n(8) ~ a exp {-I Q^-J  }  as  n •+ <=°  for   8 > 80 .      (15) 

These expressions are not necessarily good representations of 

ß (8)  for  0  near  8- ,  except when  V = 1 .  However, 

for  8  not near  8Q  and  n  large,  | (9Q-8)'/(8-U ) |  will 

be large, so that both expressions are decreasing functions of 

(8-8n)/(8-u ).  Thus, if  (8-8»)/(8-u )  is an increasing function 
u     n u     n 

12 



of 9 ,  the above test is a test of  H 0 > 60 
versus 

H. : 9 < 0„  with size approximately  a  and power function a 

decreasing function of  6  when  n  is large. 

For a test of  H  : 6 = 9   versus H  : 9 = 0^ >  9Q) ,  if 

we use the rejection region for H  : (9_-Y )/(Y -Y _.) < (a -1) 

and denote the power function by  3 (0),  using (13) we find 

* lim 3 (9 ) = a   whatever the values of the parameters of  F 
n •> oo n 

other than  9.  We find the following asymptotic expressions 

for  3*(6) : 
n 

3>) -»(a^-D^^^^f^J^^^V^ra/v) • 
I  n / 

{-l<-*v-»hÄr      } u
        v   n * a 

exp as  n -*• °° for J0' (16) 

-Ö« \l/v 
3>- 1- (l-a) exp[- (^) as n ->.<»• for 9 > 0Q .  (17) 

As in the previous case, except when  V = 1 ,  the 

expressions in (16) and (17) are not necessarily good representations 

of the power function when  0  is near  9_ .  Also, if 

(9-9_)/(.9-u )  is an increasing function of  9 ,  the test is 

a test of  Hn : 9 < 9n  versus  IL : 9 > 9„  with size approximately 

a  and power function increasing in  9  when  n  is large. 
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